Confidence Intervals for Mean and Difference of Means of Normal Distributions with Unknown Coefficients of Variation

نویسندگان

  • Warisa Thangjai
  • Suparat Niwitpong
چکیده

This paper proposes confidence intervals for a single mean and difference of two means of normal distributions with unknown coefficients of variation (CVs). The generalized confidence interval (GCI) approach and large sample (LS) approach were proposed to construct confidence intervals for the single normal mean with unknown CV. These confidence intervals were compared with existing confidence interval for the single normal mean based on the Student’s t-distribution (small sample size case) and the z-distribution (large sample size case). Furthermore, the confidence intervals for the difference between two normal means with unknown CVs were constructed based on the GCI approach, the method of variance estimates recovery (MOVER) approach and the LS approach and then compared with the Welch–Satterthwaite (WS) approach. The coverage probability and average length of the proposed confidence intervals were evaluated via Monte Carlo simulation. The results indicated that the GCIs for the single normal mean and the difference of two normal means with unknown CVs are better than the other confidence intervals. Finally, three datasets are given to illustrate the proposed confidence intervals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean

 ‎A Poisson distribution is well used as a standard model for analyzing count data‎. ‎So the Poisson distribution parameter estimation is widely applied in practice‎. ‎Providing accurate confidence intervals for the discrete distribution parameters is very difficult‎. ‎So far‎, ‎many asymptotic confidence intervals for the mean of Poisson distribution is provided‎. ‎It is known that the coverag...

متن کامل

Area specific confidence intervals for a small area mean under the Fay-Herriot model

‎Small area estimates have received much attention from both private and public sectors due to the growing demand for effective planning of health services‎, ‎apportioning of government funds and policy and decision making‎. ‎Surveys are generally designed to give representative estimates at national or district level‎, ‎but estimates of variables of interest are oft...

متن کامل

TESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE

This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...

متن کامل

Incremental adaptive networks implemented by free space optical (FSO) communication

The aim of this paper is to fully analyze the effects of free space optical (FSO) communication links on the estimation performance of the adaptive incremental networks. The FSO links in this paper are described with two turbulence models namely the Log-normal and Gamma-Gamma distributions. In order to investigate the impact of these models we produced the link coefficients using these distribu...

متن کامل

Joint Confidence Regions

Confidence intervals are one of the most important topics in mathematical statistics which are related to statistical hypothesis tests. In a confidence interval, the aim is that to find a random interval that coverage the unknown parameter with high probability. Confidence intervals and its different forms have been extensively discussed in standard statistical books. Since the most of stati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017